
Activate Your GAIM: A Toolkit for Input in Active Games
Matthew Brehmer, T.C. Nicholas Graham, Tadeusz Stach

 School of Computing
Queen’s University

brehmer@cs.ubc.ca, { graham, tstach}@cs.queensu.ca

ABSTRACT
Active games are video games that involve physical activity.
Interaction in active games is captured via a variety of input
devices such as accelerometers, cameras, pressure sensors and
exercise equipment. It is difficult for programmers to deal with
this profusion of devices, leading most active games to be tied to a
particular hardware platform. In this paper, we introduce the
GAIM toolkit. GAIM simplifies input handling in active games
through a high-level API that abstracts the details of individual
devices. This allows developers to write code independently of the
input devices used, allows the toolkit to dynamically adapt to the
devices a player has available, and allows people with different
hardware to play together. We illustrate the approach through two
active games developed using the GAIM toolkit.

Categories and Subject Descriptors
H.5.2 [User Interface]: Input devices and strategies, Interaction
styles;

Keywords
Active video game, exergame, game development toolkit

1. INTRODUCTION
Active games, video games that involve physical activity, have
become tremendously popular in recent years. Examples include
Wii Tennis, where players swing an accelerometer to control a
tennis racquet [18]; Dance Dance Revolution, where players
perform dance steps to music [8], and Frozen Treasure Hunter,
where players pedal a bicycle while carrying out quests in a
virtual world [26]. The success of the Nintendo Wii, which has
sold over 67 million units to-date [6], indicates the popularity of
active games. Interest has been further increased by the
announcement of new motion sensing technologies, such as
Microsoft’s Project Natal and Sony’s Move.

Despite the importance of this new form of interaction, active
games are difficult to program, and are poorly supported by
toolkits. Most active games are designed for a specific hardware
platform: Wii games are based on input from accelerometers and
IR tracking; EyeToy games are designed around camera input
[12], and PCGamerBike games are tied to pedal and steering
input. This is analogous to the early days of graphical user
interfaces, where programmers needed to write custom code to
support each mouse or trackball that might be connected to the
computer.
In this paper, we present the General Active Input Model (or
GAIM) toolkit. GAIM simplifies the programming of active
games by abstracting the details of active input devices. GAIM

provides programmers with a set of abstract inputs that capture
the game-level intent of the input rather than the low-level inputs
provided by the device. For example, an exercise bicycle or a
heart rate monitor might provide a power input representing the
player’s degree of exertion; a Wii Remote might provide gesture
and point inputs capturing the player’s movements; and a depth
camera or Wii Balance Board might provide stance inputs
specifying the player’s position.
The use of these abstract inputs carries three advantages over
hand-coding. First, programmers are freed from the details of low-
level input hardware, no longer having to deal with hidden
Markov models for processing accelerometer data [23] or custom
API’s for exercise equipment. Second, games can run over a wide
range of hardware without special coding. This allows games to
automatically adapt to the hardware that the player actually has
available, without special coding or recompilation for different
devices. This approach also allows players with different
hardware to play together, reducing the barriers to multiplayer
exercise.
This paper is organized as follows. To motivate the need for
device-independent input handling, we review the diversity of
hardware used in active video games. We then summarize the
GAIM classification of input for active games that is used as the
basis of our toolkit. We then introduce the software framework
itself, and show how it can be used to implement active games
over a variety of hardware devices. Our examples show that
GAIM-based active games can require less input-handling code
than non-active versions of the same game.

2. INPUT HARDWARE
Recent years have seen the emergence of an excitingly diverse set
of devices supporting active games. Here we summarize common
approaches used to capture physical movement in active games.
Accelerometers measure changes in speed and rotation. For
example, Nintendo’s Wii Remote contains a 3-axis accelerometer
that is used to detect gestures such as swings of a tennis racquet or
golf club (figure 1A). Networks of accelerometers can be used to
perform full pose detection [23]. Accelerometers are subject to
cumulative error, however, and therefore are poorly suited for
detecting absolute position. This problem can be to some degree
addressed by augmenting the accelerometer with a gyroscope, as
with Nintendo’s Wii MotionPlus attachment for the Wii Remote.
Developing games using accelerometers requires the use of
complex classification and recognition algorithms, typically based
on hidden Markov models [7, 23]. Individual gestures must be
trained.
Cameras permit the capture and analysis of images or video.
Some active games use vision to determine a player’s position and
movement. For instance, vision-based input is used in Sony’s
EyeToy and PlayStation Move, Microsoft’s Project Natal (figure
1C), and some academic games [11, 25]. Unlike accelerometer-

151

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

...$10.00
ACM FuturePlay 2010, May 6-7, 2010, Vancouver, BC. Canada
Copyright 2010 ACM 978-1-4503-0235-7

based approaches, vision often seeks to track the actual positions
of objects, allowing for example the real-time tracking of a
baseball bat, a sword or a light sabre.
Capturing human input with computer vision may require
complex classifiers [17, 22]. Challenges include accurately
identifying objects in varying lighting conditions, tracking
occluded objects, and filtering complex backgrounds.
Accelerometer and vision-based input have the shortcoming that
they provide no resistance to the player’s movement. For
example, in a tennis game, the player does not feel the weight of
the tennis racquet, or feel the force of the ball impacting the
racquet. Ergometers are exercise equipment that provide
resistance, and allow real-time measurement of the physiological
effects of physical activity. Ergometers are common in active
games designed to promote physical activity (“exergames”).
Examples include the Tunturi E6R, a recumbent exercise bicycle
(figure 1D); the Fisher-Price Smart Cycle, a children’s bicycle;
the PCGamerBike Mini, a floor-mounted pedaling device
compatible with many commercial games (figure 1E), and the
Gamercize stepper products.
Ergometers are often used to determine the rate of travel of
avatars in games, such as controlling a truck in Heart-Burn [21], a
robot in Frozen Treasure Hunter [26], or the speed of a boat in
Swan Boat [1].
Sometimes games require players to contact locations in the
physical world. Pressure sensors and touch sensors capture
contact with a surface, and may report the degree of force applied
to the contact. These sensors are typically built into pads or mats.
For instance, Dance Dance Revolution uses touch sensors to track
players’ dance steps; Remote Impact uses pressure sensors to
measure the force and position of players’ punches and kicks [14],
and the Wii Balance Board contains pressure sensors to determine
a player’s center of gravity (see figure 1B).
This wide range of input hardware makes it difficult to program
active games. Some hardware requires complex, low-level
programming using hidden Markov or image processing
algorithms. When attempting to detect similar inputs (e.g., the
player’s position or gestures), very different algorithms may be
required depending on the input device. Even when the devices
are similar, completely different API’s may be required (e.g., for
exercise bicycles such as the Tunturi E6R and the PCGamerBike.)
By abstracting input from hardware in our GAIM toolkit, we
allow active games to be developed independently of specific
input devices. This is analogous to how the developer of a PC
video game does not need to know whether the player is using a
mouse, a touchpad or a trackball.

GAIM is based on a recent classification of active input [20]. To
motivate this choice, we first explore existing input classifications
and toolkits, and then present the abstract input model underlying
our toolkit.

3. CLASSIFYING INPUT IN ACTIVE
GAMES

There have been several approaches to classifying and formalizing
input for classical desktop interfaces. Card et al. have classified
the design space of traditional input devices [3]. Duke et al. have
created a formalism for describing input interactions [5]. Toolkits
such as Garnet [15] and the Universal Structured Model [4] allows
for the development of interactive desktop applications
independently of input devices.

The Reality-Based Interaction framework provides an
understanding for interfaces beyond traditional desktop interaction
(e.g., virtual, mixed, and augmented reality) [9]. While the
framework’s high-level descriptions of interactions help
understand the range of interactions possible in modern interfaces,
a finer-grained approach is required for the development of an
active games toolkit.

Toolkits have been developed for handling physical and tangible
interactions. The Exemplar tool was created for the development
of sensor-based controls [7]. Although the tool links sensor input
to application logic, the level of abstraction is not general enough
to encapsulate active game interactions. The Papier-Mâché toolkit
abstracts input for tangible objects in a ubiquitous environment
[10], while the iStuff toolkit allows for the development of
interactive ubiquitous systems [2]. Although both Papier-Mâché
and iStuff treat input in an abstract manner, they are heavily
focused on ubiquitous computing, and do not cover many of the
input types common in active games.

3.1 Abstract Input Classification
Our own classification [20] identifies six styles of interaction
commonly found in active games: gesture, stance, point, power,
continuous control, and tap. These styles were identified through
the examination of 107 academic and commercial active games.
As we will see in section 4, the GAIM toolkit’s API is based on
these input styles, rather than on concrete input devices. We now
detail these six abstract interaction styles.

A gesture is the movement of part or all of the body in a defined
pattern. Gestures in active games typically represent commands
and not real-time controls. For example, in Wii Bowling, when a
player completes a throwing gesture using a Wii Remote, it is
interpreted as a specific command (avatar releases ball). Gestures

A

B

D E C

Figure 1: Example active input hardware. (A) Wii Remote, (B) Wii Balance Board, (C) Microsoft Project Natal camera,
(D) Tunturi E6R ergometer, (E) PCGamerBike Mini

152

may also include additional information, such as force and
direction.
Stance represents the position of a person’s body and limbs at a
specific time. A stance describes the player’s pose as opposed to
an action the player may be performing. In contrast with gestures,
which capture movements over time, a stance captures a player’s
position at a given instant. Stance input is the core of the
Posemania dancing game [23], where players must position their
body correctly in time in order to score points. Stance in
Posemania is detected by a set of accelerometers attached to the
player’s body. Stance is also used in Namco Bandai Games’ We
Ski, where players lean left and right to determine their direction
when skiing down a hill.
Pointing is used by players to reference in-game entities. Pointing
captures a deictic reference, not a player’s pose. Players typically
point a finger or hand-held device at a region of the display. For
instance, in Sega’s House of the Dead series, a player points a
light gun at the screen to aim her weapon.
Power is a measure of the intensity of the player’s activity. Power
input is captured continuously over a period of time. For example,
in Swan Boat players use a treadmill to power an on-screen boat
[1]; the player’s running speed determines the speed of the boat.
Conversely, the Heart Burn game uses heart rate as a measure of
power to control the speed of a player’s virtual truck on a race
track [21].
Continuous control maps the player’s body movement to the
position of an on-screen entity. For instance, in Sega Superstars:
Sonic, the EyeToy camera tracks a player’s hand to determine the
movement of an on-screen character. Similarly, in the Body-
Driven Bomberman game, a player’s position in physical space is

mapped directly to the virtual position of her avatar [11].
Continuous control differs from gesturing in that it provides real-
time mapping to the virtual object being controlled, whereas
gestures invoke a command once they are complete.
A tap occurs when a player touches an object or location. For
example, in Dance Dance Revolution, players dance in time to
music by tapping locations on a floor mat with their feet. In
Remote Impact, players spar with each other by punching a touch-
sensitive mat [14].
The six input types presented above generalize the common
interactions in active games. As described in section 4, these input
types form the API of our GAIM toolkit.

3.2 Example Games
We use two example games to illustrate how this input
classification naturally abstracts active input from the underlying
input devices. We converted existing games to active gameplay
using the GAIM toolkit; our experience in doing so is described in
section 5.

3.2.1 Racing Game
This 3D racing game (based on Microsoft’s XNA Racing Game)
allows a player to race a car around a track. In our active version
of the game, the car’s speed is controlled by a power input, and its
direction is controlled with the left analog stick of an Xbox 360
controller. Players can provide power to the game using a choice
of stationary bicycles or by jogging on the spot (figure 2).
Power is derived either from the player’s speed (pedal cadence
and tension) or the player’s heart rate (relative to their target heart
rate.) In this example, inputs from four different devices (two

Figure 2: Racing Game. (A) PCGamerBike Mini input,
(B) Tunturi E6R input, (C) Polar heart rate monitor input

Figure 3: Spacewar Game. (Bottom) Wii Remote and Balance
Board input

153

bicycles and two models of heart rate monitor) are abstracted to
the single power input type.

3.2.2 Spacewar
Spacewar (based on the XNA Creator’s Club Spacewar game) is a
multiplayer 2D game inspired by the original Spacewar game of
1962. In the game, a player maneuvers her ship around obstacles
while trying to shoot her opponent’s ship. In our active version of
Spacewar, a player’s stance is used to steer her ship, and a
“hammering” gesture is used to fire weapons (figure 3). Leaning
left rotates the ship to the left, and leaning right rotates the ship to
the right. Leaning forward accelerates, while leaning backwards
slows the ship down. A player vigorously shakes her hand up and
down to fire the ship’s weapons. Stance is captured using a
Nintendo Wii Balance Board, and gestures are captured with a
Wii Remote. This example illustrates how a game’s interaction
may be composed from multiple active input types.

4. THE GAIM TOOLKIT
Based on the classification presented in section 3.1, the GAIM
toolkit is a class library that abstracts the details of individual
input devices. This provides developers with three key
advantages. The toolkit:
� abstracts the details of peripherals used to capture active

input, simplifying the programming task;
� allows active games to adapt to the hardware the player

actually has, without special coding or recompilation;
� allows people using different devices to play together.
GAIM allows developers to program active games based on the

six input types described in section 3.1. The toolkit provides a
variety of implementations for each input type, allowing
transparent plug-replacement of input devices without requiring
modification to the program code. As with the XNA Racing Game
example, the power input type can be used to determine the speed
of a player’s avatar. Power input might be provided by a variety
of possible devices, such as a stationary bicycle, a treadmill, or
jogging on the spot. The game’s program code does not need to
reference the underlying device. Because of this, a single game
can be compatible with many input devices (as long as at least one
of them provides the required input type), and in multiplayer
games, players can interact with the game using different devices.

4.1 Abstract Details of Input Devices
Developers of active games currently must program using the
API’s of specific hardware input devices. For example, the active
Racing Game (figure 2) can be played using a Tunturi E6R
Ergometer, a PCGamerBike Mini, and a Polar heart rate monitor.
To obtain information on the player’s exertion level, these devices
require the use of the Tunturi protocol, the FitXF protocol and the
SparkFun protocol, respectively. Therefore, special purpose code
must be written for each device that might be used with the game.
This device dependence hinders the portability of games. For
example, a game designed for Wii Remote and Balance Board
input does not easily port to the PlayStation Eye.
Our approach instead uses the six abstract input types identified in
section 3.1. The toolkit provides interfaces for four of the six
input types: IPower, IGesture, IPoint and IStance. (Interfaces for
the tap and continuous control input types will be added in the

Figure 4: Design of the GAIM toolkit with expanded IPower interface

154

future.) If a programmer wishes to use a particular input type in a
game, she instantiates the appropriate interface. For example, in
the Spacewar game of figure 3, the direction of the spaceship is
based on the player’s stance. The programmer asks the toolkit for
an implementation of the IStance interface. The toolkit selects the
best device to provide stance input, and returns an IStance object
tied to that device. The game queries this object for the current
center of gravity values, and uses them to set the ships direction.
Each device is capable of providing one or more input types. For
example, the E6R Ergometer provides power input, while the Wii
Remote provides both gesture and point inputs.
The toolkit is divided into three layers. The abstract input layer is
intended for use by application programmers, and provides access
to the input types identified in our classification. The abstract
device layer provides interfaces to broad classes of devices (e.g.,
bicycles, heart rate monitors, accelerometers), while abstracting
their differences. The device layer provides access to concrete
devices. Classes at this layer interact with application programmer
interfaces provided by the device’s manufacturer or with
independently developed interfaces.
For example, figure 4 shows the classes making up GAIM’s
IPower interface. The interface provides a single property, Power,
that reports the game player’s current power output. The toolkit
provides two alternative implementations of power – one based on
stationary bicycles (BikePower), and the other based on heart rate
(TargetHRPower). As described in section 3.2.1, heart rate input
bases the player’s power on how close she is to her target heart
rate [20]. These classes rely on interfaces provided by the abstract
input layer. The IBike interface provides attributes capturing the
current power, tension, cadence and direction of the bicycle
device. The IHRMonitor interface reports the player’s current
heart rate.
The device layer provides access to the equipment itself. Each
concrete device implements one or more abstract inputs. The
PCGamerBike class implements the IBike interface, while the
HRMI class implements the IHRMonitor interface. The Tunturi
E6R is a recumbent stationary bicycle supporting both cycling and
heart rate monitoring, and therefore the TunturiBike class
implements both interfaces.
When a game is played, one of the possible implementations of
IPower will be chosen at runtime, based on preference and
availability of hardware.
A challenge in designing these interfaces is that not all devices
provide the same functionality. For example, as a full-featured
exercise bicycle, the Tunturi E6R provides full control over
tension and cadence, and reports power generated in Watts. As a
less expensive gaming peripheral, the PCGamerBike Mini
provides only cadence information. (Tension can be set manually,
but cannot be read programmatically.) The PCGamerBike Mini
cannot report true power values, since the tension value is
required to compute it. The PCGamerBike class therefore
estimates power from the current cadence and an average tension
value. Additionally, tension can be set manually by an application
program should it have better knowledge of the tension (e.g., via
user input.)

4.2 Adapt to Player Hardware
The GAIM toolkit allows active games to adapt to the hardware
that is available to the player. Some existing active games already
do this in a limited form. For example, EA Sports Active’s Tennis

game allows players to swing their tennis racquet with a Wii
Remote. If a Wii Balance Board is available, players may perform
additional actions like lunging for the ball. This is a simple form
of runtime adaptation, where extra actions are possible if
supplemental hardware is available, but the game remains
playable without it.
In games developed with GAIM, players may use radically
different hardware as long as it implements the required abstract
input. To determine which input devices are available, the toolkit
uses a simple textual configuration file. The file lists each
available input type and, if necessary, specifies the port over
which it can be connected. For example, the following
configuration file specifies three power sources – two BikePower
sources, and one TargetHRPower source. All three specify the
actual device that can be used to obtain the input. Additionally,
the configuration file specifies that stance information can be
obtained via WiiStance, as provided by the Wii Balance Board:
 BikePower PCGamerBike
 BikePower TunturiBike COM1
 TargetHRPower HRMI COM3
 WiiStance WiiStance

Within a game, the programmer uses the DeviceManager class to
access devices implementing the desired input type. For example,
to obtain power input, the programmer simply writes:
 IPower powerDevice = DeviceManager.getIPower();

The current power value can then be referenced as
powerDevice.Power.
The device manager chooses the first implementation of the
IPower interface specified in the configuration file. In the above
example, the PCGamerBike would be used to provide power
input. Therefore, the toolkit is able to choose from a set of
available devices, based on their ability to implement the desired
abstract input interfaces. From the programmer’s perspective, this
choice is transparent.
Adding new device types to the toolkit requires programming.
The device has to be added into the class hierarchy in the
appropriate place(s), depending on the abstract input it is capable
of implementing. The device manager needs to be modified to be
capable of instantiating the new device. A significant benefit of
this approach is that existing games can use new hardware as it
becomes available without even requiring recompilation.

4.3 Support Hardware of Multiple Players
A major advantage of the GAIM approach is that it allows
distributed play between people with different available hardware.
For example, in the active Racing Game of figure 2, one player
can use a PCGamerBike Mini while another uses a Polar heart
rate monitor. This makes it easier for people to play together, even
if they have chosen to purchase different active gaming
peripherals.
A challenge in allowing people with different hardware to play
together is that one person’s hardware may be better suited to the
game than their opponent’s, providing an unfair advantage. For
example, a player using a Wii MotionPlus enjoys more accurate
gesture recognition than one with a standard Wii Remote.
Similarly, the Tunturi E6R provides more comfortable and stable
seating than the PCGamerBike Mini, but has higher latency in
reporting changes of speed. This problem of differing quality is
not unique to active games – in a first-person shooter, a player
using a laptop touchpad is significantly disadvantaged versus an

155

opponent using a high-end gaming mouse. One could imagine
techniques for balancing these inequalities, such as adding latency
to the PCGamerBike Mini, or increasing the error rate of the Wii
MotionPlus. However, in GAIM, we follow the approach of
standard gaming of allowing each device to operate as best it can,
and accepting that this may lead to inequalities.
Devices may differ not just in the quality with which they
implement interaction but also in basic features. For example, the
Tunturi E6R supports forward pedaling only, and has variable
resistance under programmatic control. The PCGamerBike Mini
supports forward and backward pedaling, but provides no
programmatic control of resistance. One way of handling these
differences would be to take the lowest common denominator of
all possible devices, and support only those functions (e.g.,
forward pedaling only and no resistance control.) However, this
approach burdens players with the shortcomings of all devices,
even those not in use. In GAIM, we address this problem using
default values, availability properties, and functionality mix-ins,
described below.
In the abstract input layer, default values are provided for
properties that are not available on the device. For example, the
Tunturi E6R implementation of IBike (see figure 4) always has the
value of 0 radians for direction, while the PCGamerBike Mini
may have values of 0 or π radians, depending on whether the
player is pedaling forwards or backwards. Similarly, the
PCGamerBike Mini always reports a tension of 25 Watts, even
though the tension is in fact unknown. These default values allow
games to operate with lower-capability hardware, albeit with less
functionality. Programmers may choose to add special cases to
their code depending on whether the hardware supports a
particular function. To permit this, the abstract input classes
provide availability properties to indicate which functions are
actually supported. For example, the IBike interface provides a
boolean HasPedalTension property that specifies whether pedal
tension is correctly reported, or estimated via a default value.
Also at the input layer, mix-in classes can be deployed to add
missing functionality. For example, figure 5 shows how the
PCGamerBike’s bidirectionality can be extended to general
direction. The IDirection abstract input reports a direction;
PCGamerBike implements this (giving one of two directions), as
does the Controller class (giving arbitrary direction, specified by

the right stick of an Xbox 360 controller.) A new
PCGamerBikeDirection class mixes these two functionalities to
give a steerable PCGamerBike Mini, where both pedaling and
turning direction are taken into account. Specifically, pedaling
forward with the stick to the right moves forward and right, while
pedaling backwards with the stick to the right moves backward
and left. The use of such mix-ins allows traditional devices to be
used to augment active input devices, compensating for missing
functionality in an active input device.

5. EXPERIENCE
To evaluate the effectiveness of the toolkit, we created the two
active games described in section 3.2. Both games were derived
from existing games built for keyboard/mouse or game controller
play. We chose to modify existing games so that we could
compare the code required to create a traditional game versus a
device-independent active game.
The active Racing Game was based on Microsoft’s XNA Racing
Game (available at www.xnaracinggame.com). The game’s
functionality is unchanged, other than that players now control the
speed of their car using a power input.
To modify the game, we removed 35 lines of code taking input
from the mouse/keyboard or game controller, and inserted 11 lines
of code to process power input. Since the game uses the IPower
interface, no code changes are required to change from one device
to another. As described in section 4.2, a simple text file is used to
specify which devices are available to the application, allowing
the toolkit to determine which class to use to implement IPower.
This example illustrates the practicality of basing input on high-
level input types such as those described in this paper. Not only
does the approach provide device independence, allowing
radically different input devices to control the same game, but it
(at least in this case) requires less code to process active input
than was required to use traditional input devices.
To illustrate support for multiple input devices, we modified the
XNA Creators’ Club’s Spacewar Game (available at
creators.xna.com). In our active version of the game, the player’s
stance is used to steer the ship, and a “hammering” gesture is used
to fire weapons. Stance is captured using a Nintendo Wii Balance
Board, and gestures are captured with a Wii Remote. Figure 2
shows the modified Spacewar game using the stance and gesture
active input techniques.
The Spacewar game requires 425 lines of code to implement
traditional input. The Active Spacewar game required 32 lines to
support input based on stance and gesture. The “hammering”
gesture is included with the GAIM toolkit; if a new gesture had
been used, time would have been required to train it, but no
additional code would have been necessary.
The use of stance and gesture shows that it is possible to combine
multiple active input types in a single game. Other combinations
are also possible; for example, a game could include power and
gesture inputs, or point and tap inputs.
Over all, our experience shows that it is practical to develop active
games using the GAIM toolkit. In the case of these two games, the
code required for device-independent active input is in fact less
than the code required for traditional mouse, keyboard and
gamepad input.

Figure 5: Class diagram of IDirection for supporting mixed
active power input

156

6. DISCUSSION
GAIM provides developers with platform independence and ease
of development. As with all toolkits, these benefits come at the
cost of low-level control of input devices. The GAIM toolkit
allows programmers choice over this tradeoff between high-level
programming and low-level control. The layered approach allows
developers to access input at the level of abstract inputs (where
the device is hidden), abstract devices (where the class of device
is known, but the actual device is hidden), and concrete devices.
For maximum portability, the abstract input layer should be used.
However, if a programmer requires direct access to a particular
hardware device, it is possible to obtain it.
An open question is the degree to which GAIM will prove to be
extensible to new input devices as they come on the market. The
input classification on which GAIM is based has been used to
describe over 100 active games on a variety of platforms [20],
lending confidence to its generality. Upcoming devices
(particularly Microsoft Natal and PlayStation Move) appear to
provide gesture, continuous control and stance input. As such,
they provide similar inputs to existing technologies (EyeToy, Wii
Remote, Wii Balance Board), but with significantly improved
accuracy. Ultimately, the toolkit’s extensibility will be determined
by its ability to accommodate new input technologies as they
become available.
Further work is required to address the problem that different
players may have different experiences depending on the concrete
hardware they possess. The mix-in class approach described
earlier is a promising way of using standard input devices to
augment the capabilities of active input devices. Game designers
could also consider offering handicaps to players with less
capable hardware. The layered architecture of the toolkit enables
both approaches
In designing the GAIM toolkit, we explicitly excluded pervasive
games [13], in favour of games that could be played in the living
room. This is because, to-date, most active input devices have
been attached to consoles or personal computers. The advent of
portable devices with global positioning systems and
accelerometers (such as the iPhone) has made the development of
ubiquitous games practical. Ubiquitous games involve a wide
range of sensors for detecting players’ position and orientation,
based on devices such as GPS, gyroscopes, accelerometers, WiFi
triangulation and RFID. It would be therefore be a worthwhile
extension of GAIM to include the input devices necessary for
ubiquitous gaming.
Another interesting area opened by the GAIM toolkit is the
possibility of developing active games for differently abled users.
Input mechanisms providing the six input types could be custom-
built for players with specific physical limitations. For example,
the GameWheels [16] and GameCycle [24] input devices both
provide power input.

7. CONCLUSION
In this paper, we have introduced a novel toolkit for dealing with
input in active games. The primary goal of the toolkit is to help
programmers deal with the wide variety of active input devices.
The toolkit is based on an abstract input classification [20], which
identifies the six input types of power, gesture, point, tap,
continuous control and stance. We have designed the toolkit’s API
around these six input types, abstracting the details of a broad
range of devices, such as accelerometers, heart-rate monitors,
ergometers and pressure sensors. This approach allows

applications to be developed independently of the details of the
input devices used, allows applications to automatically adapt to
the hardware a player has available, and allows players with
different hardware to play together.
We have illustrated that the key to the toolkit’s success is its use
of an open, layered architecture. Applications can be fully device-
independent using the abstract input layer. If knowledge of a
particular class of device is required, the abstract device layer can
be used. Finally, access to specific devices is possible through the
concrete device layer. We have illustrated the use of the toolkit
through the conversion of two games from traditional input to
active input, and shown that in both cases, less code was required
to implement the active version.
Our future plans include extending the toolkit to support more
devices, and gaining further experience in its application.

8. ACKNOWLEDGEMENTS
The implementation of the GAIM toolkit owes significantly to
several class libraries implementing interfaces to underlying
devices. Will Roberts’ TunturiBike class implements the Tunturi
protocol, allowing us to interface with an E6R recumbent bike via
a COM port. The WiimotePoint and WiiStance classes make use
of Brian Peek’s WiimoteLibrary to support input from Wii
controllers (www.wiimotelib.org). The WiiGLE library [19] is
used in our WiiGesture class, and our gestures sets were trained
with the WiiGLE GUI application. We thank the authors of all of
these libraries.
This work was partially supported by the NSERC Strategic
Project “Technology for Rich Group Interaction in Networked
Games”.

9. REFERENCES
[1] Ahn, M., Kwon, S., Park, B., Cho, K., Choe, S. P., Hwang,

I., Jang, H., Park, J., Rhee, Y., and Song, J. Running or
gaming. In Proc. ACE 2009, 422. 345-348.

[2] Ballagas, R., Ringel, M., Stone, M., and Borchers, J. iStuff:
a physical user interface toolkit for ubiquitous computing
environments. In Proc. CHI 2003, 537-544

[3] Card, S. K., Mackinlay, J. D., and Robertson, G. G. The
design space of input devices. In Proc. CHI 1990, 117-124.

[4] Dewan, P. Towards a Universal Toolkit Model for
Structures. In Proc. EIS 2007, 393-412.

[5] Duke, D., Faconti, G., Harrison, M., and Paternó, F.
Unifying views of interactors. In Proc. AVI 1994, 143-152.

[6] Fletcher, J.C., DS sells 125 million worldwide, Wii up to 67
million, Joystiq, Jan. 28, 2010.

[7] Hartmann, B., Abdulla, L., Mittal, M., and Klemmer, S. R.
Authoring sensor-based interactions by demonstration with
direct manipulation and pattern recognition. In Proc. CHI
2007, 145-154.

[8] Hoysniemi, J. International survey on the Dance Dance
Revolution game. Comput. Entertain. 4(2), 2006, 8.

[9] Jacob, R. J., Girouard, A., Hirshfield, L. M., Horn, M. S.,
Shaer, O., Solovey, E. T., and Zigelbaum, J. Reality-based
interaction: a framework for post-WIMP interfaces. In
Proc. CHI 2008, 201-210.

157

[10] Klemmer, S. R., Li, J., Lin, J., and Landay, J. A. Papier-
Mache: toolkit support for tangible input. In Proc. CHI
2004, 399-406

[11] Laakso, S., and Laakso, M. Design of a body-driven
multiplayer game system. In Comput. Entertain., 4(4),
2006, 7.

[12] Larssen, A., Loke, L., Robertson, T., and Edwards, J.
Understanding movement as input for interaction—a study
of two eyetoy™ games. In Proc. OzCHI 2004.

[13] Magerkurth, C., Cheok, A. D., Mandryk, R. L., and Nilsen,
T. Pervasive games: bringing computer entertainment back
to the real world. Comput. Entertain. 3(3), 2005, 4.

[14] Mueller, F.F., Agamanolis, S., Vetere, F., Gibbs, M.R.
Remote Impact: shadowboxing over a distance. In Proc.
CHI 2008, 2291-2296.

[15] Myers, B. A. A new model for handling input. ACM Trans.
Inf. Syst. 8(3), 1990, 289-320.

[16] O’Connor, T.J., Fitzgerald, S.G., Cooper, R.A., Thorman,
T.A., and Boninger, M.L. Does computer gameplay aid in
motivation of exercise and increase metabolic activity
during wheelchair ergometry? Medical Engineering and
Physics, 23(4), 267-273, 2001.

[17] Oliver, N., Rosario, B., and Pentland, A. A Bayesian
computer vision system for modeling human interaction. In
IEEE Trans. Pattern Anal. Mach. Intell., 22(8), 831-843,
2000.

[18] Parker, J. R. Games for physical activity: A preliminary
examination of the Nintendo Wii. In Proc. 6th International
Symposium on Computer Science in Sport, 2007.

[19] Rehm, M., Bee, N., and André, E. 2008. Wave like an
Egyptian: accelerometer based gesture recognition for
culture specific interactions. In Proc. British HCI 2008, 13-
22.

[20] Stach, T., Graham, T.C.N., Brehmer, M., and Hollatz, A.
Classifying input for active games. In Proc. ACE 2009, 422,
379-382.

[21] Stach, T., Graham, T.C.N., Yim, J., and Rhodes, R. Heart
rate control of exercise video games. In Proc. GI 2009, 125-
132.

[22] Moeslund, T.B., and Granum, E. A survey of computer
vision-based human motion capture. In Computer Vision
and Image Understanding, 81(3), 231-268, 2001.

[23] Whitehead, V, Johnston, H., Crampton, N., and Fox, K.
Sensor networks as video game input devices. In Proc. of
Future Play 2007, 38-45.

[24] Widman, L.M., McDonald, C.M,, and Abresch, R.T.
Effectiveness of an upper extremity exercise device
integrated with computer gaming for aerobic training in
adolescents with spinal cord dysfunction. Journal of Spinal
Cord Medicine, 29(4), 363-370, 2006.

[25] Yim, J., Qiu, E., and Graham, T.C.N. Experience in the
design and development of a game based on head-tracking
input. In Proc. Future Play 2008, 236-239.

[26] Yim, J., and Graham, T.C.N. Using games to increase
exercise motivation. In Proc. Future Play 2007, 166-173.

158

