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ABSTRACT
Active games are video games that involve physical activity. 
Interaction in active games is captured via a variety of input 
devices such as accelerometers, cameras, pressure sensors and 
exercise equipment. It is difficult for programmers to deal with 
this profusion of devices, leading most active games to be tied to a 
particular hardware platform. In this paper, we introduce the 
GAIM toolkit. GAIM simplifies input handling in active games 
through a high-level API that abstracts the details of individual 
devices. This allows developers to write code independently of the 
input devices used, allows the toolkit to dynamically adapt to the 
devices a player has available, and allows people with different
hardware to play together. We illustrate the approach through two 
active games developed using the GAIM toolkit. 

Categories and Subject Descriptors
H.5.2 [User Interface]: Input devices and strategies, Interaction 
styles; 

Keywords
Active video game, exergame, game development toolkit 

1. INTRODUCTION 
Active games, video games that involve physical activity, have 
become tremendously popular in recent years. Examples include 
Wii Tennis, where players swing an accelerometer to control a 
tennis racquet [18]; Dance Dance Revolution, where players 
perform dance steps to music [8], and Frozen Treasure Hunter, 
where players pedal a bicycle while carrying out quests in a 
virtual world [26]. The success of the Nintendo Wii, which has 
sold over 67 million units to-date [6], indicates the popularity of 
active games. Interest has been further increased by the 
announcement of new motion sensing technologies, such as 
Microsoft’s Project Natal and Sony’s Move.  

Despite the importance of this new form of interaction, active 
games are difficult to program, and are poorly supported by 
toolkits. Most active games are designed for a specific hardware 
platform: Wii games are based on input from accelerometers and 
IR tracking; EyeToy games are designed around camera input 
[12], and PCGamerBike games are tied to pedal and steering 
input. This is analogous to the early days of graphical user 
interfaces, where programmers needed to write custom code to 
support each mouse or trackball that might be connected to the 
computer. 
In this paper, we present the General Active Input Model (or 
GAIM) toolkit. GAIM simplifies the programming of active 
games by abstracting the details of active input devices. GAIM 

provides programmers with a set of abstract inputs that capture 
the game-level intent of the input rather than the low-level inputs 
provided by the device. For example, an exercise bicycle or a 
heart rate monitor might provide a power input representing the 
player’s degree of exertion; a Wii Remote might provide gesture 
and point inputs capturing the player’s movements; and a depth 
camera or Wii Balance Board might provide stance inputs 
specifying the player’s position. 
The use of these abstract inputs carries three advantages over 
hand-coding. First, programmers are freed from the details of low-
level input hardware, no longer having to deal with hidden 
Markov models for processing accelerometer data [23] or custom 
API’s for exercise equipment. Second, games can run over a wide 
range of hardware without special coding. This allows games to 
automatically adapt to the hardware that the player actually has 
available, without special coding or recompilation for different 
devices. This approach also allows players with different 
hardware to play together, reducing the barriers to multiplayer 
exercise. 
This paper is organized as follows. To motivate the need for 
device-independent input handling, we review the diversity of 
hardware used in active video games. We then summarize the 
GAIM classification of input for active games that is used as the 
basis of our toolkit. We then introduce the software framework 
itself, and show how it can be used to implement active games 
over a variety of hardware devices. Our examples show that 
GAIM-based active games can require less input-handling code 
than non-active versions of the same game. 

2. INPUT HARDWARE 
Recent years have seen the emergence of an excitingly diverse set 
of devices supporting active games. Here we summarize common 
approaches used to capture physical movement in active games. 
Accelerometers measure changes in speed and rotation. For 
example, Nintendo’s Wii Remote contains a 3-axis accelerometer 
that is used to detect gestures such as swings of a tennis racquet or 
golf club (figure 1A). Networks of accelerometers can be used to 
perform full pose detection [23]. Accelerometers are subject to 
cumulative error, however, and therefore are poorly suited for 
detecting absolute position. This problem can be to some degree 
addressed by augmenting the accelerometer with a gyroscope, as 
with Nintendo’s Wii MotionPlus attachment for the Wii Remote. 
Developing games using accelerometers requires the use of 
complex classification and recognition algorithms, typically based 
on hidden Markov models [7, 23]. Individual gestures must be
trained. 
Cameras permit the capture and analysis of images or video.
Some active games use vision to determine a player’s position and 
movement. For instance, vision-based input is used in Sony’s 
EyeToy and PlayStation Move, Microsoft’s Project Natal (figure 
1C), and some academic games [11, 25]. Unlike accelerometer-
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based approaches, vision often seeks to track the actual positions 
of objects, allowing for example the real-time tracking of a 
baseball bat, a sword or a light sabre. 
Capturing human input with computer vision may require 
complex classifiers [17, 22]. Challenges include accurately 
identifying objects in varying lighting conditions, tracking 
occluded objects, and filtering complex backgrounds. 
Accelerometer and vision-based input have the shortcoming that 
they provide no resistance to the player’s movement. For 
example, in a tennis game, the player does not feel the weight of 
the tennis racquet, or feel the force of the ball impacting the 
racquet. Ergometers are exercise equipment that provide 
resistance, and allow real-time measurement of the physiological 
effects of physical activity. Ergometers are common in active 
games designed to promote physical activity (“exergames”). 
Examples include the Tunturi E6R, a recumbent exercise bicycle 
(figure 1D); the Fisher-Price Smart Cycle, a children’s bicycle; 
the PCGamerBike Mini, a floor-mounted pedaling device 
compatible with many commercial games (figure 1E), and the 
Gamercize stepper products. 
Ergometers are often used to determine the rate of travel of 
avatars in games, such as controlling a truck in Heart-Burn [21], a 
robot in Frozen Treasure Hunter [26], or the speed of a boat in 
Swan Boat [1]. 
Sometimes games require players to contact locations in the 
physical world. Pressure sensors and touch sensors capture 
contact with a surface, and may report the degree of force applied 
to the contact. These sensors are typically built into pads or mats. 
For instance, Dance Dance Revolution uses touch sensors to track 
players’ dance steps; Remote Impact uses pressure sensors to 
measure the force and position of players’ punches and kicks [14], 
and the Wii Balance Board contains pressure sensors to determine 
a player’s center of gravity (see figure 1B). 
This wide range of input hardware makes it difficult to program 
active games. Some hardware requires complex, low-level 
programming using hidden Markov or image processing 
algorithms. When attempting to detect similar inputs (e.g., the 
player’s position or gestures), very different algorithms may be 
required depending on the input device. Even when the devices 
are similar, completely different API’s may be required (e.g., for 
exercise bicycles such as the Tunturi E6R and the PCGamerBike.) 
By abstracting input from hardware in our GAIM toolkit, we 
allow active games to be developed independently of specific 
input devices. This is analogous to how the developer of a PC 
video game does not need to know whether the player is using a 
mouse, a touchpad or a trackball. 

GAIM is based on a recent classification of active input [20]. To 
motivate this choice, we first explore existing input classifications 
and toolkits, and then present the abstract input model underlying 
our toolkit. 

3. CLASSIFYING INPUT IN ACTIVE 
GAMES 

There have been several approaches to classifying and formalizing 
input for classical desktop interfaces. Card et al. have classified 
the design space of traditional input devices [3]. Duke et al. have 
created a formalism for describing input interactions [5]. Toolkits 
such as Garnet [15] and the Universal Structured Model [4] allows 
for the development of interactive desktop applications 
independently of input devices. 

The Reality-Based Interaction framework provides an 
understanding for interfaces beyond traditional desktop interaction 
(e.g., virtual, mixed, and augmented reality) [9]. While the 
framework’s high-level descriptions of interactions help 
understand the range of interactions possible in modern interfaces, 
a finer-grained approach is required for the development of an 
active games toolkit. 

Toolkits have been developed for handling physical and tangible 
interactions. The Exemplar tool was created for the development 
of sensor-based controls [7]. Although the tool links sensor input 
to application logic, the level of abstraction is not general enough 
to encapsulate active game interactions. The Papier-Mâché toolkit 
abstracts input for tangible objects in a ubiquitous environment 
[10], while the iStuff toolkit allows for the development of 
interactive ubiquitous systems [2]. Although both Papier-Mâché 
and iStuff treat input in an abstract manner, they are heavily 
focused on ubiquitous computing, and do not cover many of the 
input types common in active games. 

3.1 Abstract Input Classification 
Our own classification [20] identifies six styles of interaction 
commonly found in active games: gesture, stance, point, power, 
continuous control, and tap. These styles were identified through 
the examination of 107 academic and commercial active games. 
As we will see in section 4, the GAIM toolkit’s API is based on 
these input styles, rather than on concrete input devices. We now 
detail these six abstract interaction styles. 

A gesture is the movement of part or all of the body in a defined 
pattern. Gestures in active games typically represent commands 
and not real-time controls. For example, in Wii Bowling, when a 
player completes a throwing gesture using a Wii Remote, it is 
interpreted as a specific command (avatar releases ball). Gestures 
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Figure 1: Example active input hardware. (A) Wii Remote, (B) Wii Balance Board, (C) Microsoft Project Natal camera,  
(D) Tunturi E6R ergometer, (E) PCGamerBike Mini 
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may also include additional information, such as force and 
direction. 
Stance represents the position of a person’s body and limbs at a 
specific time. A stance describes the player’s pose as opposed to 
an action the player may be performing. In contrast with gestures, 
which capture movements over time, a stance captures a player’s 
position at a given instant. Stance input is the core of the 
Posemania dancing game [23], where players must position their 
body correctly in time in order to score points. Stance in 
Posemania is detected by a set of accelerometers attached to the 
player’s body. Stance is also used in Namco Bandai Games’ We 
Ski, where players lean left and right to determine their direction 
when skiing down a hill. 
Pointing is used by players to reference in-game entities. Pointing 
captures a deictic reference, not a player’s pose. Players typically 
point a finger or hand-held device at a region of the display. For 
instance, in Sega’s House of the Dead series, a player points a 
light gun at the screen to aim her weapon. 
Power is a measure of the intensity of the player’s activity. Power 
input is captured continuously over a period of time. For example, 
in Swan Boat players use a treadmill to power an on-screen boat 
[1]; the player’s running speed determines the speed of the boat. 
Conversely, the Heart Burn game uses heart rate as a measure of 
power to control the speed of a player’s virtual truck on a race 
track [21]. 
Continuous control maps the player’s body movement to the 
position of an on-screen entity. For instance, in Sega Superstars: 
Sonic, the EyeToy camera tracks a player’s hand to determine the 
movement of an on-screen character. Similarly, in the Body-
Driven Bomberman game, a player’s position in physical space is 

mapped directly to the virtual position of her avatar [11]. 
Continuous control differs from gesturing in that it provides real-
time mapping to the virtual object being controlled, whereas 
gestures invoke a command once they are complete. 
A tap occurs when a player touches an object or location. For 
example, in Dance Dance Revolution, players dance in time to 
music by tapping locations on a floor mat with their feet. In 
Remote Impact, players spar with each other by punching a touch-
sensitive mat [14]. 
The six input types presented above generalize the common 
interactions in active games. As described in section 4, these input 
types form the API of our GAIM toolkit. 

3.2 Example Games 
We use two example games to illustrate how this input 
classification naturally abstracts active input from the underlying 
input devices. We converted existing games to active gameplay 
using the GAIM toolkit; our experience in doing so is described in 
section 5. 

3.2.1 Racing Game 
This 3D racing game (based on Microsoft’s XNA Racing Game) 
allows a player to race a car around a track. In our active version 
of the game, the car’s speed is controlled by a power input, and its 
direction is controlled with the left analog stick of an Xbox 360 
controller. Players can provide power to the game using a choice 
of stationary bicycles or by jogging on the spot (figure 2). 
Power is derived either from the player’s speed (pedal cadence 
and tension) or the player’s heart rate (relative to their target heart 
rate.) In this example, inputs from four different devices (two 

Figure 2: Racing Game. (A) PCGamerBike Mini input,  
(B) Tunturi E6R input, (C) Polar heart rate monitor input 

Figure 3: Spacewar Game. (Bottom) Wii Remote and Balance 
Board input 
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bicycles and two models of heart rate monitor) are abstracted to 
the single power input type. 

3.2.2 Spacewar 
Spacewar (based on the XNA Creator’s Club Spacewar game) is a 
multiplayer 2D game inspired by the original Spacewar game of 
1962. In the game, a player maneuvers her ship around obstacles 
while trying to shoot her opponent’s ship. In our active version of 
Spacewar, a player’s stance is used to steer her ship, and a 
“hammering” gesture is used to fire weapons (figure 3). Leaning 
left rotates the ship to the left, and leaning right rotates the ship to 
the right. Leaning forward accelerates, while leaning backwards 
slows the ship down. A player vigorously shakes her hand up and 
down to fire the ship’s weapons. Stance is captured using a 
Nintendo Wii Balance Board, and gestures are captured with a 
Wii Remote. This example illustrates how a game’s interaction 
may be composed from multiple active input types. 

4. THE GAIM TOOLKIT 
Based on the classification presented in section 3.1, the GAIM 
toolkit is a class library that abstracts the details of individual 
input devices. This provides developers with three key 
advantages. The toolkit: 
� abstracts the details of peripherals used to capture active 

input, simplifying the programming task; 
� allows active games to adapt to the hardware the player 

actually has, without special coding or recompilation; 
� allows people using different devices to play together. 
GAIM allows developers to program active games based on the 

six input types described in section 3.1. The toolkit provides a 
variety of implementations for each input type, allowing 
transparent plug-replacement of input devices without requiring 
modification to the program code. As with the XNA Racing Game 
example, the power input type can be used to determine the speed 
of a player’s avatar. Power input might be provided by a variety 
of possible devices, such as a stationary bicycle, a treadmill, or 
jogging on the spot. The game’s program code does not need to 
reference the underlying device. Because of this, a single game 
can be compatible with many input devices (as long as at least one 
of them provides the required input type), and in multiplayer 
games, players can interact with the game using different devices. 

4.1 Abstract Details of Input Devices 
Developers of active games currently must program using the 
API’s of specific hardware input devices. For example, the active 
Racing Game (figure 2) can be played using a Tunturi E6R 
Ergometer, a PCGamerBike Mini, and a Polar heart rate monitor. 
To obtain information on the player’s exertion level, these devices 
require the use of the Tunturi protocol, the FitXF protocol and the 
SparkFun protocol, respectively. Therefore, special purpose code 
must be written for each device that might be used with the game. 
This device dependence hinders the portability of games. For 
example, a game designed for Wii Remote and Balance Board 
input does not easily port to the PlayStation Eye. 
Our approach instead uses the six abstract input types identified in 
section 3.1. The toolkit provides interfaces for four of the six 
input types: IPower, IGesture, IPoint and IStance. (Interfaces for 
the tap and continuous control input types will be added in the 

Figure 4: Design of the GAIM toolkit with expanded IPower interface 
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future.) If a programmer wishes to use a particular input type in a 
game, she instantiates the appropriate interface. For example, in 
the Spacewar game of figure 3, the direction of the spaceship is 
based on the player’s stance. The programmer asks the toolkit for 
an implementation of the IStance interface. The toolkit selects the 
best device to provide stance input, and returns an IStance object 
tied to that device. The game queries this object for the current 
center of gravity values, and uses them to set the ships direction. 
Each device is capable of providing one or more input types. For 
example, the E6R Ergometer provides power input, while the Wii 
Remote provides both gesture and point inputs. 
The toolkit is divided into three layers. The abstract input layer is 
intended for use by application programmers, and provides access 
to the input types identified in our classification. The abstract 
device layer provides interfaces to broad classes of devices (e.g., 
bicycles, heart rate monitors, accelerometers), while abstracting 
their differences. The device layer provides access to concrete 
devices. Classes at this layer interact with application programmer 
interfaces provided by the device’s manufacturer or with 
independently developed interfaces. 
For example, figure 4 shows the classes making up GAIM’s 
IPower interface. The interface provides a single property, Power, 
that reports the game player’s current power output. The toolkit 
provides two alternative implementations of power – one based on 
stationary bicycles (BikePower), and the other based on heart rate 
(TargetHRPower). As described in section 3.2.1, heart rate input 
bases the player’s power on how close she is to her target heart 
rate [20]. These classes rely on interfaces provided by the abstract 
input layer. The IBike interface provides attributes capturing the 
current power, tension, cadence and direction of the bicycle 
device. The IHRMonitor interface reports the player’s current 
heart rate. 
The device layer provides access to the equipment itself. Each 
concrete device implements one or more abstract inputs. The 
PCGamerBike class implements the IBike interface, while the 
HRMI class implements the IHRMonitor interface. The Tunturi 
E6R is a recumbent stationary bicycle supporting both cycling and 
heart rate monitoring, and therefore the TunturiBike class 
implements both interfaces. 
When a game is played, one of the possible implementations of 
IPower will be chosen at runtime, based on preference and 
availability of hardware. 
A challenge in designing these interfaces is that not all devices 
provide the same functionality. For example, as a full-featured 
exercise bicycle, the Tunturi E6R provides full control over 
tension and cadence, and reports power generated in Watts. As a 
less expensive gaming peripheral, the PCGamerBike Mini 
provides only cadence information. (Tension can be set manually, 
but cannot be read programmatically.) The PCGamerBike Mini 
cannot report true power values, since the tension value is 
required to compute it. The PCGamerBike class therefore 
estimates power from the current cadence and an average tension 
value. Additionally, tension can be set manually by an application 
program should it have better knowledge of the tension (e.g., via 
user input.) 

4.2 Adapt to Player Hardware 
The GAIM toolkit allows active games to adapt to the hardware 
that is available to the player. Some existing active games already 
do this in a limited form. For example, EA Sports Active’s Tennis 

game allows players to swing their tennis racquet with a Wii 
Remote. If a Wii Balance Board is available, players may perform 
additional actions like lunging for the ball. This is a simple form 
of runtime adaptation, where extra actions are possible if 
supplemental hardware is available, but the game remains 
playable without it. 
In games developed with GAIM, players may use radically 
different hardware as long as it implements the required abstract 
input. To determine which input devices are available, the toolkit 
uses a simple textual configuration file. The file lists each 
available input type and, if necessary, specifies the port over 
which it can be connected. For example, the following 
configuration file specifies three power sources – two BikePower 
sources, and one TargetHRPower source. All three specify the 
actual device that can be used to obtain the input. Additionally, 
the configuration file specifies that stance information can be 
obtained via WiiStance, as provided by the Wii Balance Board: 
   BikePower PCGamerBike 
   BikePower TunturiBike COM1 
   TargetHRPower HRMI COM3 
   WiiStance WiiStance 

Within a game, the programmer uses the DeviceManager class to 
access devices implementing the desired input type. For example, 
to obtain power input, the programmer simply writes: 
   IPower powerDevice = DeviceManager.getIPower(); 

The current power value can then be referenced as 
powerDevice.Power. 
The device manager chooses the first implementation of the 
IPower interface specified in the configuration file. In the above 
example, the PCGamerBike would be used to provide power 
input. Therefore, the toolkit is able to choose from a set of 
available devices, based on their ability to implement the desired 
abstract input interfaces. From the programmer’s perspective, this 
choice is transparent. 
Adding new device types to the toolkit requires programming. 
The device has to be added into the class hierarchy in the 
appropriate place(s), depending on the abstract input it is capable 
of implementing. The device manager needs to be modified to be 
capable of instantiating the new device. A significant benefit of 
this approach is that existing games can use new hardware as it 
becomes available without even requiring recompilation. 

4.3 Support Hardware of Multiple Players 
A major advantage of the GAIM approach is that it allows 
distributed play between people with different available hardware. 
For example, in the active Racing Game of figure 2, one player 
can use a PCGamerBike Mini while another uses a Polar heart 
rate monitor. This makes it easier for people to play together, even 
if they have chosen to purchase different active gaming 
peripherals. 
A challenge in allowing people with different hardware to play 
together is that one person’s hardware may be better suited to the 
game than their opponent’s, providing an unfair advantage. For 
example, a player using a Wii MotionPlus enjoys more accurate 
gesture recognition than one with a standard Wii Remote. 
Similarly, the Tunturi E6R provides more comfortable and stable 
seating than the PCGamerBike Mini, but has higher latency in 
reporting changes of speed. This problem of differing quality is 
not unique to active games – in a first-person shooter, a player 
using a laptop touchpad is significantly disadvantaged versus an 
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opponent using a high-end gaming mouse. One could imagine 
techniques for balancing these inequalities, such as adding latency 
to the PCGamerBike Mini, or increasing the error rate of the Wii 
MotionPlus. However, in GAIM, we follow the approach of 
standard gaming of allowing each device to operate as best it can, 
and accepting that this may lead to inequalities. 
Devices may differ not just in the quality with which they 
implement interaction but also in basic features. For example, the 
Tunturi E6R supports forward pedaling only, and has variable 
resistance under programmatic control. The PCGamerBike Mini 
supports forward and backward pedaling, but provides no 
programmatic control of resistance. One way of handling these 
differences would be to take the lowest common denominator of 
all possible devices, and support only those functions (e.g., 
forward pedaling only and no resistance control.) However, this 
approach burdens players with the shortcomings of all devices, 
even those not in use. In GAIM, we address this problem using 
default values, availability properties, and functionality mix-ins, 
described below. 
In the abstract input layer, default values are provided for 
properties that are not available on the device. For example, the 
Tunturi E6R implementation of IBike (see figure 4) always has the 
value of 0 radians for direction, while the PCGamerBike Mini 
may have values of 0 or π radians, depending on whether the 
player is pedaling forwards or backwards. Similarly, the 
PCGamerBike Mini always reports a tension of 25 Watts, even 
though the tension is in fact unknown. These default values allow 
games to operate with lower-capability hardware, albeit with less 
functionality. Programmers may choose to add special cases to 
their code depending on whether the hardware supports a 
particular function. To permit this, the abstract input classes 
provide availability properties to indicate which functions are 
actually supported. For example, the IBike interface provides a 
boolean HasPedalTension property that specifies whether pedal 
tension is correctly reported, or estimated via a default value. 
Also at the input layer, mix-in classes can be deployed to add 
missing functionality. For example, figure 5 shows how the 
PCGamerBike’s bidirectionality can be extended to general 
direction. The IDirection abstract input reports a direction; 
PCGamerBike implements this (giving one of two directions), as 
does the Controller class (giving arbitrary direction, specified by 

the right stick of an Xbox 360 controller.) A new 
PCGamerBikeDirection class mixes these two functionalities to 
give a steerable PCGamerBike Mini, where both pedaling and 
turning direction are taken into account. Specifically, pedaling 
forward with the stick to the right moves forward and right, while 
pedaling backwards with the stick to the right moves backward 
and left. The use of such mix-ins allows traditional devices to be 
used to augment active input devices, compensating for missing 
functionality in an active input device. 

5. EXPERIENCE 
To evaluate the effectiveness of the toolkit, we created the two 
active games described in section 3.2. Both games were derived 
from existing games built for keyboard/mouse or game controller 
play. We chose to modify existing games so that we could 
compare the code required to create a traditional game versus a 
device-independent active game. 
The active Racing Game was based on Microsoft’s XNA Racing 
Game (available at www.xnaracinggame.com). The game’s 
functionality is unchanged, other than that players now control the 
speed of their car using a power input. 
To modify the game, we removed 35 lines of code taking input 
from the mouse/keyboard or game controller, and inserted 11 lines 
of code to process power input. Since the game uses the IPower 
interface, no code changes are required to change from one device 
to another. As described in section 4.2, a simple text file is used to 
specify which devices are available to the application, allowing 
the toolkit to determine which class to use to implement IPower. 
This example illustrates the practicality of basing input on high-
level input types such as those described in this paper. Not only 
does the approach provide device independence, allowing 
radically different input devices to control the same game, but it 
(at least in this case) requires less code to process active input 
than was required to use traditional input devices. 
To illustrate support for multiple input devices, we modified the  
XNA Creators’ Club’s Spacewar Game (available at 
creators.xna.com). In our active version of the game, the player’s 
stance is used to steer the ship, and a “hammering” gesture is used 
to fire weapons. Stance is captured using a Nintendo Wii Balance 
Board, and gestures are captured with a Wii Remote. Figure 2 
shows the modified Spacewar game using the stance and gesture 
active input techniques. 
The Spacewar game requires 425 lines of code to implement 
traditional input. The Active Spacewar game required 32 lines to 
support input based on stance and gesture. The “hammering” 
gesture is included with the GAIM toolkit; if a new gesture had 
been used, time would have been required to train it, but no 
additional code would have been necessary. 
The use of stance and gesture shows that it is possible to combine 
multiple active input types in a single game. Other combinations 
are also possible; for example, a game could include power and 
gesture inputs, or point and tap inputs. 
Over all, our experience shows that it is practical to develop active 
games using the GAIM toolkit. In the case of these two games, the 
code required for device-independent active input is in fact less 
than the code required for traditional mouse, keyboard and 
gamepad input. 

Figure 5: Class diagram of IDirection for supporting mixed 
active power input 
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6. DISCUSSION 
GAIM provides developers with platform independence and ease 
of development. As with all toolkits, these benefits come at the 
cost of low-level control of input devices. The GAIM toolkit 
allows programmers choice over this tradeoff between high-level 
programming and low-level control. The layered approach allows 
developers to access input at the level of abstract inputs (where 
the device is hidden), abstract devices (where the class of device 
is known, but the actual device is hidden), and concrete devices. 
For maximum portability, the abstract input layer should be used. 
However, if a programmer requires direct access to a particular 
hardware device, it is possible to obtain it. 
An open question is the degree to which GAIM will prove to be 
extensible to new input devices as they come on the market. The 
input classification on which GAIM is based has been used to 
describe over 100 active games on a variety of platforms [20], 
lending confidence to its generality. Upcoming devices 
(particularly Microsoft Natal and PlayStation Move) appear to 
provide gesture, continuous control and stance input. As such, 
they provide similar inputs to existing technologies (EyeToy, Wii 
Remote, Wii Balance Board), but with significantly improved 
accuracy. Ultimately, the toolkit’s extensibility will be determined 
by its ability to accommodate new input technologies as they 
become available. 
Further work is required to address the problem that different 
players may have different experiences depending on the concrete 
hardware they possess. The mix-in class approach described 
earlier is a promising way of using standard input devices to 
augment the capabilities of active input devices. Game designers 
could also consider offering handicaps to players with less 
capable hardware. The layered architecture of the toolkit enables 
both approaches  
In designing the GAIM toolkit, we explicitly excluded pervasive 
games [13], in favour of games that could be played in the living 
room. This is because, to-date, most active input devices have 
been attached to consoles or personal computers. The advent of 
portable devices with global positioning systems and 
accelerometers (such as the iPhone) has made the development of 
ubiquitous games practical. Ubiquitous games involve a wide 
range of sensors for detecting players’ position and orientation, 
based on devices such as GPS, gyroscopes, accelerometers, WiFi 
triangulation and RFID. It would be therefore be a worthwhile 
extension of GAIM to include the input devices necessary for 
ubiquitous gaming. 
Another interesting area opened by the GAIM toolkit is the 
possibility of developing active games for differently abled users. 
Input mechanisms providing the six input types could be custom-
built for players with specific physical limitations. For example, 
the GameWheels [16] and GameCycle [24] input devices both 
provide power input. 

7. CONCLUSION 
In this paper, we have introduced a novel toolkit for dealing with 
input in active games. The primary goal of the toolkit is to help 
programmers deal with the wide variety of active input devices. 
The toolkit is based on an abstract input classification [20], which 
identifies the six input types of power, gesture, point, tap, 
continuous control and stance. We have designed the toolkit’s API 
around these six input types, abstracting the details of a broad 
range of devices, such as accelerometers, heart-rate monitors, 
ergometers and pressure sensors. This approach allows 

applications to be developed independently of the details of the 
input devices used, allows applications to automatically adapt to 
the hardware a player has available, and allows players with 
different hardware to play together. 
We have illustrated that the key to the toolkit’s success is its use 
of an open, layered architecture. Applications can be fully device-
independent using the abstract input layer. If knowledge of a 
particular class of device is required, the abstract device layer can 
be used. Finally, access to specific devices is possible through the 
concrete device layer. We have illustrated the use of the toolkit 
through the conversion of two games from traditional input to 
active input, and shown that in both cases, less code was required 
to implement the active version. 
Our future plans include extending the toolkit to support more 
devices, and gaining further experience in its application. 
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